Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Pharmacol Toxicol ; 23(1): 18, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35337381

RESUMO

BACKGROUND: Propofol and dexmedetomidine (DEX) are widely used in general anesthesia, and exert toxic and protective effects on hippocampal neurons, respectively. The study sought to investigate the molecular mechanisms of DEX-mediated neuroprotection against propofol-induced hippocampal neuron injury in mouse brains. METHODS: Hippocampal neurons of mice and HT22 cells were treated with propofol, DEX, and propofol+DEX. In addition, transfection of miR-377-5p mimics or inhibitors was performed in HT22 cells. Neuronal apoptosis was evaluated by a means of terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) or Hochest 33,258 staining; Arc positive expression in hippocampus tissues was detected using a microscope in immunohistochemistry assays; miRNA-377-5p expression was quantified by RT-qPCR; the protein levels of Arc, DNMT3A, and DNMT3B were determined using western blot; Cell Counting Kit-8 (CCK-8) assay was used to detect the viability and apoptotic rate of the neurons; methylation analysis in the miR-377-5p promoter was performed through methylated DNA immunoprecipitation (MeDIP) assay; dual luciferase reporter assay was performed to confirm whether Arc was under targeted regulation of miR-377-5p. RESULTS: In the current study, both in vitro and in vivo, propofol treatment induced hippocampal neuron apoptosis and suppressed cell viability. DNMT3A and DNMT3B expression levels were decreased following propofol treatment, resulting in lowered methylation in the miR-377-5p promoter region and then enhanced expression of miR-377-5p, leading to a decrease in the expression of downstream Arc. Conversely, the expression levels of DNMT3A and DNMT3B were increased following DEX treatment, thus methylation in miR-377-5p promoter region was improved, and miR-377-5p expression was decreased, leading to an increase in the expression of downstream Arc. Eventually, DEX pretreatment protected hippocampal neurons against propofol-induced neurotoxicity by recovering the expression levels of DNMT3A, miR-377-5p, and Arc to the normal levels. Additionally, DNMT3A knockdown improved miR-377-5p expression but reduced Arc expression, and DNMT3A overexpression exerted the opposite effects. Dual luciferase reporter assay revealed a binding target between miR-377-5p and Arc 3'UTR. The neuroprotective effect of DEX against propofol-induced neuronal apoptosis was diminished after Arc knockdown. Silencing Arc independently triggered the apoptosis of HT22 cells, which was alleviated through transfection of miR-377-5p inhibitors. CONCLUSIONS: DEX reduced propofol-induced hippocampal neuron injury via the miR-377-5p/Arc signaling pathway.


Assuntos
Dexmedetomidina , MicroRNAs , Propofol , Animais , Apoptose , Proteínas do Citoesqueleto , Dexmedetomidina/farmacologia , Hipocampo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso , Neurônios , Propofol/metabolismo , Propofol/farmacologia
2.
J Huazhong Univ Sci Technolog Med Sci ; 36(3): 428-433, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27376816

RESUMO

This study aimed to establish a new propofol target-controlled infusion (TCI) model in animals so as to study the general anesthetic mechanism at multi-levels in vivo. Twenty Japanese white rabbits were enrolled and propofol (10 mg/kg) was administrated intravenously. Artery blood samples were collected at various time points after injection, and plasma concentrations of propofol were measured. Pharmacokinetic modeling was performed using WinNonlin software. Propofol TCI within the acquired parameters integrated was conducted to achieve different anesthetic depths in rabbits, monitored by narcotrend. The pharmacodynamics was analyzed using a sigmoidal inhibitory maximal effect model for narcotrend index (NI) versus effect-site concentration. The results showed the pharmacokinetics of propofol in Japanese white rabbits was best described by a two-compartment model. The target plasma concentrations of propofol required at light anesthetic depth was 9.77±0.23 µg/mL, while 12.52±0.69 µg/mL at deep anesthetic depth. NI was 76.17±4.25 at light anesthetic depth, while 27.41±5.77 at deep anesthetic depth. The effect-site elimination rate constant (ke0) was 0.263/min, and the propofol dose required to achieve a 50% decrease in the NI value from baseline was 11.19 µg/mL (95% CI, 10.25-13.67). Our results established a new propofol TCI animal model and proved the model controlled the anesthetic depth accurately and stably in rabbits. The study provides a powerful method for exploring general anesthetic mechanisms at different anesthetic depths in vivo.


Assuntos
Anestésicos Intravenosos/farmacocinética , Modelos Estatísticos , Propofol/farmacocinética , Anestésicos Intravenosos/sangue , Animais , Monitoramento de Medicamentos , Infusões Intravenosas , Propofol/sangue , Coelhos , Software
3.
Nat Prod Commun ; 9(7): 999-1001, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25230513

RESUMO

Alpinia zerumbet 'Variegata' is an aromatic medicinal plant, its foliage producing an intense, unique fragrant odor. This study identified 46 volatile compounds in the leaf tissue of this plant using headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). The major compounds included 1, 8-cineole (43.5%), p-cymene (14.7%), humulene (5.5%), camphor (5.3%), linalool (4.7%), (E)-methyl cinnamate (3.8%), gamma-cadinene (3.3%), humulene oxide II (2.1%) and a-terpineol (1.5%). The majority of the volatiles were terpenoids of which oxygenated monoterpenes were the most abundant, accounting for 57.2% of the total volatiles. Alcohols made up the largest (52.8%) and aldehydes the smallest (0.2%) portions of the volatiles. Many bioactive compounds were present in the volatiles.


Assuntos
Alpinia/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Folhas de Planta/química , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...